Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bone ; 182: 117065, 2024 May.
Article En | MEDLINE | ID: mdl-38428556

INTRODUCTION: Human mesenchymal stem cells (hMSCs) sense and respond to biomechanical and biophysical stimuli, yet the involved signaling pathways are not fully identified. The clinical application of biophysical stimulation including pulsed electromagnetic field (PEMF) has gained momentum in musculoskeletal disorders and bone tissue engineering. METHODOLOGY: We herein aim to explore the role of PEMF stimulation in bone regeneration by developing trabecular bone-like tissues, and then, culturing them under bone-like mechanical stimulation in an automated perfusion bioreactor combined with a custom-made PEMF stimulator. After selecting the optimal cell seeding and culture conditions for inspecting the effects of PEMF on hMSCs, transcriptomic studies were performed on cells cultured under direct perfusion with and without PEMF stimulation. RESULTS: We were able to identify a set of signaling pathways and upstream regulators associated with PEMF stimulation and to distinguish those linked to bone regeneration. Our findings suggest that PEMF induces the immune potential of hMSCs by activating and inhibiting various immune-related pathways, such as macrophage classical activation and MSP-RON signaling in macrophages, respectively, while promoting angiogenesis and osteogenesis, which mimics the dynamic interplay of biological processes during bone healing. CONCLUSIONS: Overall, the adopted bioreactor-based investigation platform can be used to investigate the impact of PEMF stimulation on bone regeneration.


Electromagnetic Fields , Transcriptome , Humans , Bone and Bones , Bone Regeneration , Bioreactors
2.
Sci Rep ; 14(1): 1722, 2024 01 19.
Article En | MEDLINE | ID: mdl-38242930

Intrinsic permeability describes the ability of a porous medium to be penetrated by a fluid. Considering porous scaffolds for tissue engineering (TE) applications, this macroscopic variable can strongly influence the transport of oxygen and nutrients, the cell seeding process, and the transmission of fluid forces to the cells, playing a crucial role in determining scaffold efficacy. Thus, accurately measuring the permeability of porous scaffolds could represent an essential step in their optimization process. In literature, several methods have been proposed to characterize scaffold permeability. Most of the currently adopted approaches to assess permeability limit their applicability to specific scaffold structures, hampering protocols standardization, and ultimately leading to incomparable results among different laboratories. The content of novelty of this study is in the proposal of an adaptable test bench and in defining a specific testing protocol, compliant with the ASTM International F2952-22 guidelines, for reliable and repeatable measurements of the intrinsic permeability of TE porous scaffolds. The developed permeability test bench (PTB) exploits the pump-based method, and it is composed of a modular permeability chamber integrated within a closed-loop hydraulic circuit, which includes a peristaltic pump and pressure sensors, recirculating demineralized water. A specific testing protocol was defined for characterizing the pressure drop associated with the scaffold under test, while minimizing the effects of uncertainty sources. To assess the operational capabilities and performance of the proposed test bench, permeability measurements were conducted on PLA scaffolds with regular (PS) and random (RS) micro-architecture and on commercial bovine bone matrix-derived scaffolds (CS) for bone TE. To validate the proposed approach, the scaffolds were as well characterized using an alternative test bench (ATB) based on acoustic measurements, implementing a blind randomized testing procedure. The consistency of the permeability values measured using both the test benches demonstrated the reliability of the proposed approach. A further validation of the PTB's measurement reliability was provided by the agreement between the measured permeability values of the PS scaffolds and the theory-based predicted permeability value. Once validated the proposed PTB, the performed measurements allowed the investigation of the scaffolds' transport properties. Samples with the same structure (guaranteed by the fused-deposition modeling technique) were characterized by similar permeability values, and CS and RS scaffolds showed permeability values in agreement with the values reported in the literature for bovine trabecular bone. In conclusion, the developed PTB and the proposed testing protocol allow the characterization of the intrinsic permeability of porous scaffolds of different types and dimensions under controlled flow regimes, representing a powerful tool in view of providing a reliable and repeatable framework for characterizing and optimizing scaffolds for TE applications.


Tissue Engineering , Tissue Scaffolds , Animals , Cattle , Tissue Engineering/methods , Porosity , Reproducibility of Results , Tissue Scaffolds/chemistry , Permeability
3.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Article En | MEDLINE | ID: mdl-36364654

In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.

4.
Sci Rep ; 12(1): 13859, 2022 08 16.
Article En | MEDLINE | ID: mdl-35974079

In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.


Electromagnetic Fields , Tissue Engineering , Bioreactors , Bone and Bones , Cell Differentiation/genetics , Cells, Cultured , Osteogenesis/genetics , Perfusion , Printing, Three-Dimensional , Reproducibility of Results , Tissue Engineering/methods , Tissue Scaffolds
...